Blog Archive

Αλέξανδρος Γ. Σφακιανάκης

Monday, October 11, 2021

Localization of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) α confined to the surface of lipid droplets and adjacent narrow cytoplasm in progesterone-producing cells of in situ ovaries of adult mice

xlomafota13 shared this article with you from Inoreader
Via histochem

pubmed-meta-image.png

Acta Histochem. 2021 Oct 5;123(7):151794. doi: 10.1016/j.acthis.2021.151794. Online ahead of print.

ABSTRACT

Phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) produced by phosphatidylinositol phosphate 5 kinase (PIP5K) plays not only as a precursor of second messengers in the phosphoinositide signal transduction, but also multiple roles influencing a variety of cellular activities. From this viewpoint, the present study attempted to localize PIP5Kα in the ovaries in situ of adult mice. PIP5Kα-immunoreactivity was confined to the surfaces of lipid droplets (LDs) and their adjacent cytoplasm in progesterone-producing cells of the interstitial glands, corpora lutea and theca interna. The LDs often contained membranous tubules/lamellae along their surfaces and within their interior whose membranes were continuous with those delineating LDs composed of a monolayer of phospholipids and were partially PIP5Kα-immunoreactive. Although granulosa cells of healthy-looking follicles were immunonegative, as the atresia progressed, PIP5Kα-immunoreactivity first appeared in sparsely dispersed dot forms in mural cells of the follicular epithelia, and then were dominant in almost all mural cells that remained after desquamation of the antral cells. The present study provides evidence suggesting that PI(4,5)P2 locally synthesized by PIP5K in LDs is involved in the lipid transfer between lipid droplets (LDs) and the endoplasmic reticulum, which eventually regulates ov arian progesterone production through control of multiple dynamic activities of LDs. It is also suggested that PIP5Kα and PI(4,5)P2 are implicated in the modulation of programmed cell death and/or acquiring the ability of progesterone production in some follicular cells surviving atresia.

PMID:34624591 | DOI:10.1016/j.acthis.2021.151794

View on the web

No comments:

Post a Comment