Blog Archive

Αλέξανδρος Γ. Σφακιανάκης

Monday, October 11, 2021

Deep Learning for nasopharyngeal Carcinoma Identification Using Both White Light and Narrow‐Band Imaging Endoscopy

xlomafota13 shared this article with you from Inoreader

Objectives/Hypothesis

To develop a deep-learning-based automatic diagnosis system for identifying nasopharyngeal carcinoma (NPC) from noncancer (inflammation and hyperplasia), using both white light imaging (WLI) and narrow-band imaging (NBI) nasopharyngoscopy images.

Study Design

Retrospective study.

Methods

A total of 4,783 nasopharyngoscopy images (2,898 WLI and 1,885 NBI) of 671 patients were collected and a novel deep convolutional neural network (DCNN) framework was developed named Siamese deep convolutional neural network (S-DCNN), which can simultaneously utilize WLI and NBI images to improve the classification performance. To verify the effectiveness of combining the above-mentioned two modal images for prediction, we compared the proposed S-DCNN with two baseline models, namely DCNN-1 (only considering WLI images) and DCNN-2 (only considering NBI images).

Results

In the threefold cross-validation, an overall accuracy and area under the curve of the three DCNNs achieved 94.9% (95% confidence interval [CI] 93.3%–96.5%) and 0.986 (95% CI 0.982–0.992), 87.0% (95% CI 84.2%–89.7%) and 0.930 (95% CI 0.906–0.961), and 92.8% (95% CI 90.4%–95.3%) and 0.971 (95% CI 0.953–0.992), respectively. The accuracy of S-DCNN is significantly improved compared with DCNN-1 (P-value <.001) and DCNN-2 (P-value = .008).

Conclusion

Using the deep-learning technology to automatically diagnose NPC under nasopharyngoscopy can provide valuable reference for NPC screening. Superior performance can be obtained by simultaneously utilizing the multimodal features of NBI image and WLI image of the same patient.

Level of Evidence

3 Laryngoscope, 2021

View on the web

No comments:

Post a Comment