Am J Cancer Res. 2021 Jun 15;11(6):2782-2801. eCollection 2021.
ABSTRACT
In this study, we intended to explore a novel combination treatment scheme for pancreatic cancer, using irreversible electroporation (IRE) and OX40 agonist. We further aimed to investigate the capacity and mechanism of this combination treatment using an in vivo mouse aggressive pancreatic cancer model. To this end, mice subcutaneously injected with KPC1199 pancreatic tumor cells were treated with IRE, followed by intraperitoneal injection of OX40 agonist. Tumor growth and animal survival were observed. Flow cytometry analysis, immunohistochemistry, and immunofluorescence were used to evaluate the immune cell populations within the tumors. The tumor-specific immunity was assessed using ELISpot assay. Besides, the cytokine patterns both in serum and tumors were identified using Luminex assay. After combination therapy with IRE and OX40 agonist, 80% of the mi ce completely eradicated the established subcutaneous tumors, during the 120 days observation period. Rechallenging these tumor-free mice at day 120 with KPC1199 tumor cells leads to complete resistance to tumor growth, suggesting that the combination therapy generated long-term-specific antitumor immune memory. Moreover, combination therapy significantly delayed the growth of contralateral untreated tumors, and significantly prolonged animal survival, suggesting that a potent systematic anti-tumor immunity was induced by combination therapy. Mechanically, combination therapy amplified antitumor immune response induced by IRE, as manifested by the increased quality and quantity of CD8+ T cells trigged by IRE. Together, these results provide strong evidence for the clinical assessment of the combination of IRE and OX40 agonist in patients with pancreatic cancer.
PMID:34249428 | PMC:PMC8263674
No comments:
Post a Comment