Blog Archive

Αλέξανδρος Γ. Σφακιανάκης

Monday, July 12, 2021

Integrative multiplatform-based molecular profiling of human colorectal cancer reveals proteogenomic alterations underlying mitochondrial inactivation

xlomafota13 shared this article with you from Inoreader

Am J Cancer Res. 2021 Jun 15;11(6):2893-2910. eCollection 2021.

ABSTRACT

Mitochondria play leading roles in initiation and progression of colorectal cancer (CRC). Proteogenomic analyses of mitochondria of CRC tumor cells would likely enhance our understanding of CRC pathogenesis and reveal new independent prognostic factors and treatment targets. However, comprehensive investigations focused on mitochondria of CRC patients are lacking. Here, we investigated global profiles of structural variants, DNA methylation, chromatin accessibility, transcriptome, proteome, and phosphoproteome on human CRC. Proteomic investigations uncovered greatly diminished mitochondrial proteome size in CRC relative to that found in adjacent healthy tissues. Integrated with analysis of RNA-Seq datasets obtained from the public database containing mRNA data of 538 CRC patients, the proteomic analysis indicated that proteins encoded by 45.5% of identified progno stic CRC genes were located within mitochondria, highlighting the association between altered mitochondrial function and CRC. Subsequently, we compared structural variants, DNA methylation, and chromatin accessibility of differentially expressed genes and found that chromatin accessibility was an important factor underlying mitochondrial gene expression. Furthermore, phosphoproteomic profiling demonstrated decreased phosphorylation of most mitochondria-related kinases within CRC versus adjacent healthy tissues, while also highlighting MKK3/p38 as an essential mitochondrial regulatory pathway. Meanwhile, systems-based analyses revealed identities of key kinases, transcriptional factors, and their interconnections. This research uncovered a close relationship between mitochondrial dysfunction and poor CRC prognosis, improve our understanding of molecular mechanism underlying mitochondrial linked to human CRC, and facilitate identifies of clinically relevant CRC prognostic factors and drug targets.

PMID:34249434 | PMC:PMC8263689

View on the web

No comments:

Post a Comment