Blog Archive

Αλέξανδρος Γ. Σφακιανάκης

Wednesday, December 12, 2018

Radioiodination and biodistribution of newly synthesized 3-benzyl-2-([3-methoxybenzyl]thio)benzo[g]quinazolin-4-(3H)-one in tumor bearing mice.

Related Articles

Radioiodination and biodistribution of newly synthesized 3-benzyl-2-([3-methoxybenzyl]thio)benzo[g]quinazolin-4-(3H)-one in tumor bearing mice.

Saudi Pharm J. 2018 Dec;26(8):1120-1126

Authors: Al-Salahi R, Moustapha ME, Abuelizz HA, Alharthi AI, Alburikan KA, Ibrahim IT, Marzouk M, Motaleb MA

Abstract
3-Benzyl-2-((3-methoxybenzyl)thio)benzo[g]quinazolin-4(3H)-one was previously synthesized and proved by physicochemical analyses (HRMS, 1H and 13C NMR). The target compound was examined for its radioactivity and the results showed that benzo[g]quinazoline was successfully labeled with radioactive iodine using NBS via an electrophilic substitution reaction. The reaction parameters that affected the labeling yield such as concentration, pH and time were studied to optimize the labeling conditions. The radiochemical yield was 91.2 ± 1.22% and the in vitro studies showed that the target compound was stable for up to 24 h. The thyroid was among the other organs in which the uptake of 125I-benzoquinazoline has increased significantly over the time up to 4.1%. The tumor uptake was 6.95%. Radiochemical and metabolic stability of the benzoquinazoline in vivo/in vitro and biodistribution studies provide some insights about the requirements for developing more potent radiopharmaceutical for targeting the tumor cells.

PMID: 30532632 [PubMed]



from PubMed via alexandrossfakianakis on Inoreader https://ift.tt/2Ej5AcN

No comments:

Post a Comment