Novel approach to improve progesterone hydroxylation selectivity by CYP106A2 via rational design of adrenodoxin binding.
FEBS J. 2018 Dec 07;:
Authors: Sagadin T, Riehm J, Putkaradze N, Hutter MC, Bernhardt R
Abstract
Bacterial P450s have considerable potential for biotechnological applications. The P450, CYP106A2, from Bacillus megaterium ATCC 13368 converts progesterone to several hydroxylated products that are important precursors for pharmaceutical substances. As high yields of monohydroxylated products are required for biotechnological processes, improving this conversion is of considerable interest. It has previously been shown that the binding mode of the redox partner can affect the selectivity of the progesterone hydroxylation, being more stringent in case of the Etp1 compared with Adx(4-108). Therefore, in this study we aimed to improve hydroxylation selectivity by optimizing the binding of Adx(4-108) with CYP106A2 allowing for a shorter distance between both redox centers. To change putative binding interface of Adx(4-108) with CYP106A2, molecular docking was used to choose mutation sites for alter. Mutants at positions Y82 and P108 of Adx were produced and investigated, and confirmed our hypothesis. Protein-protein docking, as well as conversion studies, using the mutants demonstrated that the FeS-cluster/heme distance diminished significantly, which subsequently led to an approximately 2.5-fold increase in 15β-hydroxyprogesterone, the main product of progesterone conversion by CYP106A2. This article is protected by copyright. All rights reserved.
PMID: 30537187 [PubMed - as supplied by publisher]
from PubMed via alexandrossfakianakis on Inoreader https://ift.tt/2GcPVya
No comments:
Post a Comment