Blog Archive

Αλέξανδρος Γ. Σφακιανάκης

Tuesday, October 26, 2021

Adipose mesenchymal stem cells and gingival mesenchymal stem cells have a comparable effect in endothelium repair

xlomafota13 shared this article with you from Inoreader

Exp Ther Med. 2021 Dec;22(6):1415. doi: 10.3892/etm.2021.10851. Epub 2021 Oct 8.

ABSTRACT

Restenosis is the major factor influencing the long-term success rate of angioplasty and stent implantation and effective strategies to prevent restenosis remain limited. Mesenchymal stem cells (MSCs) are pluripotent stem cells capable of self-renewal and multidirectional differentiation, which may be able to promote endothelium repair, thereby reducing restenosis. The present study aimed to evaluate the effects of adipose MSCs (AMSCs) and gingival MSCs (GMSCs) on endothelium repair. MSCs were isolated from two human tissue types, namely adipose tissue and gingival tissue, and the effects of AMSCs and GMSCs in ex vivo endothelium repair and on vascular smooth muscle cell (SMC) growth were examined. To compare the feasibility of using AMSCs and GMSCs for the repair of endothelium damage in endothelial cell (EC) damage and vasoproliferative d isorders, an ex vivo model of endothelium repair in a co-culture system was developed. It was indicated that AMSCs and GMSCs expressed characteristic MSC markers (CD105 and CD166). 3H-thymidine incorporation in the co-culture group of AMSCs and SMCs in the presence of ECs was lower compared with that in the GMSC and SMC co-culture group. The protein expression level of proliferating cell nuclear antigen in the co-culture group of AMSCs and SMCs in the presence of ECs were lower compared with that in the GMSC and SMC co-culture group. After co-culture with ECs for 5 days, 25.71±3.08% of AMSCs began to express CD31 protein and 20.06±2.09% of GMSCs began to express CD31 protein. Furthermore, anti-VEGF antibody was able to inhibit MSC differentiation. Collectively, the present results suggested that seeding of AMSCs had a stronger effect to inhibit the proliferation and migration of SMCs compared with GMSCs.

PMID:34676008 | PMC:PMC8524764 | DOI:10.3892/etm.2021.10851

View on the web

No comments:

Post a Comment