Blog Archive

Αλέξανδρος Γ. Σφακιανάκης

Wednesday, November 11, 2020

Treatment of cartilage defects by Low-intensity pulsed ultrasound in a sheep model

Alexandros G.Sfakianakis shared this article with you from Inoreader

Abstract

Aim of this study was to evaluate effects of Low-intensity pulsed ultrasound on repair of articular cartilage defects. Low-intensity pulsed ultrasound (Lipus) can induce the differentiation and activation of chondrocytes. This study was designed to evaluate the effect of Lipus on articular cartilage defects in a sheep. Eight sheep were divided in to two groups. The animals received bilateraly, articular cartilage defects 4 mm in diameter and 2 mm in deep on the patellar groove and experimental groups were treated with intensity 200 mW/cm2, 20 min/day with low-intensity pulsed ultrasound for 2 month. Then both knee joints underwent surgery for remove of formed tissue sample from defects.The samples were evaluated by Quantitative real-time polymerase chain reaction (qRT-PCR), Safranin-o staining, Immunofluorescence Staining and Morphological characterization. The best and worst sample per group according to Macroscopic and micriscopic scoring were icentified. The results showed that the operated groups with-Lipus-treatment and without-Lipus treatment had considered statistically significant. Gross photography revealed that the defects in experimental groups were filled with proliferative tissue, while in control groups, a thin layer of proliferative tissue was formed in defects. qRT-PCR results showed the expression of coll2, sox9, aggrecan and Osteocalcin in experimental groups. Intense safranin-O staining show the formation cartilage tissue in ultrasound treated group, while loose safranin-o-staining were observed at the control groups. Immunofluorescence staining showed the type 2 Collagen protein expression. We suggest that low-intensity pulsed ultrasound provide the mechanistic basis force for articular cartilage repair and effective treatment modality for improving of articular cartilage defects.

View on the web

No comments:

Post a Comment