Blog Archive

Αλέξανδρος Γ. Σφακιανάκης

Monday, November 16, 2020

Research Status of Differentially Expressed Noncoding RNAs in Type 2 Diabetes Patients

alkiviadis.1961 shared this article with you from Inoreader

bmri.banner.jpg

Aims. Noncoding RNAs (ncRNAs) play an important role in the occurrence and development of type 2 diabetes mellitus (T2DM). This paper summarized the current evidences of the involvement microRNAs, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in the differential expressions and their interaction with each other in T2DM. Methods. The differentially expressed miRNAs, lncRNAs, and circRNAs in the blood circulation (plasma, serum, whole blood, and peripheral blood mononuclear cells) of patients with T2DM were found in PubMed, GCBI, and other databases. The interactions between ncRNAs were predicted based on the MiRWalk and the DIANA Tools databases. The indirect and direct target genes of lncRNAs and circRNAs were predicted based on the starBase V2.0, DIANA Tools, and LncRNA-Target databases. The n, GO and KEGG analysis on all miRNA, lncRNA, and circRNA target genes was performed using the mirPath and Cluster Profile software package in R language. The lncRNA–miRNA and circRNA–miRNA interaction diagram was constructed with Cytoscape. The aim of this investigation was to construct a mechanism diagram of lncRNA involved in the regulation of target genes on insulin signaling pathways and AGE–RAGE signaling pathways of diabetic complications. Results. A total of 317 RNAs, 283 miRNAs, and 20 lncRNAs and circRNAs were found in the circulation of T2DM. Dysregulated microRNAs and lncRNAs were found to be involved in signals related to metabolic disturbances, insulin signaling, and AGE–RAGE signaling in T2DM. In addition, lncRNAs participate in the regulation of key genes in the insulin signaling and AGE–RAGE signaling pathways through microRNAs, which leads to insulin resistance and diabetic vascular complications. Conclusion. Noncoding RNAs participate in the occurrence a nd development of type 2 diabetes and lead to its vascular complications by regulating different signaling pathways.
View on the web

No comments:

Post a Comment