Cancer Treat Rev. 2022 Mar 15;106:102380. doi: 10.1016/j.ctrv.2022.102380. Online ahead of print.
ABSTRACT
Most malignant thyroid tumours are initially treated with surgery or a combination of surgery and radioactive iodine (RAI) therapy. However, in patients with metastatic disease, many tumours become refractory to RAI, and these patients require alternative treatments, such as locoregional therapies and/or systemic treatment with multikinase inhibitors. Improvements in our under standing of the genetic alterations that occur in thyroid cancer have led to the discovery of several targeted therapies with clinical efficacy. These alterations include NTRK (neurotrophic tyrosine receptor kinase) gene fusions, with the tropomyosin receptor kinase inhibitors larotrectinib and entrectinib both approved by the European Medicines Agency and in other markets worldwide. Inhibitors of aberrant proteins resulting from alterations in RET (rearranged during transfection) and BRAF (B-Raf proto-oncogene) have also shown promising efficacy, and so far have received approval by the US Food and Drug Administration. Selpercatinib, a RET kinase inhibitor, was approved for use in Europe in early 2021. With the discovery of multiple actionable targets, it is imperative that effective testing strategies for these genetic alterations are integrated into the diagnostic armamentarium to ensure that patients who could potentially benefit from targeted treatments are identified. In this review, we offer our recommendations on the optimal testing strategies for detecting genetic alterations in thyroid cancer that have the potential to be targeted by molecular therapy. We also discuss the future of treatments for thyroid cancers, including the use of immune checkpoint inhibitors, and new generations of targeted treatments that are being developed to counter acquired tumour resistance.
PMID:35305441 | DOI:10.1016/j.ctrv.2022.102380
No comments:
Post a Comment