Abstract
Normal-hearing listeners adapt to alterations in sound localization cues. This adaptation can result from the establishment of a new spatial map of the altered cues or from a stronger relative weighting of unaltered compared to altered cues. Such reweighting has been shown for monaural vs. binaural cues. However, studies attempting to reweight the two binaural cues, interaural differences in time (ITD) and level (ILD), yielded inconclusive results. This study investigated whether binaural-cue reweighting can be induced by lateralization training in a virtual audio-visual environment. Twenty normal-hearing participants, divided into two groups, completed the experiment consisting of 7 days of lateralization training, preceded and followed by a test measuring the binaural-cue weights. Participants' task was to lateralize 500-ms bandpass-filtered (2–4 kHz) noise bursts containing various combinations of spatially consistent and inconsistent binaural cues. D uring training, additional visual cues reinforced the azimuth corresponding to ITDs in one group and ILDs in the other group and the azimuthal ranges of the binaural cues were manipulated group-specifically. Both groups showed a significant increase of the reinforced-cue weight from pre- to posttest, suggesting that participants reweighted the binaural cues in the expected direction. This reweighting occurred within the first training session. The results are relevant as binaural-cue reweighting likely occurs when normal-hearing listeners adapt to new acoustic environments. Reweighting might also be a factor underlying the low contribution of ITDs to sound localization of cochlear-implant listeners as they typically do not experience reliable ITD cues with clinical devices.
No comments:
Post a Comment