Blog Archive

Αλέξανδρος Γ. Σφακιανάκης

Thursday, March 18, 2021

Effects of neutron radiation on Nrf2-regulated antioxidant defense systems in rat lens

xlomafota13 shared this article with you from Inoreader

Exp Ther Med. 2021 Apr;21(4):334. doi: 10.3892/etm.2021.9765. Epub 2021 Feb 8.

ABSTRACT

Accumulating evidence suggests that ionizing radiation (IR)-induced cataract may be associated with oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) serves as a master regulator of the antioxidant defense system against oxidative stress. The present study aimed to investigate the effects of different doses of neutron radiation on the Nrf2-reegulated antioxidant defense system in rat lens and assess the status of oxidative stress. A total of 24 SD rats were randomly divided into the following four groups: i) Control group; iis) 0.4 Sv group; iii) 1.2 Sv group; and iv) 3.6 Sv group. The rats were sacrificed 7 days after radiation and lenses were dissected for histological, biochemical (malondialdehyde, glutathione and superoxide dismutase) and western blot (Nrf2, glutamate-cysteine ligase catalytic subunit and heme oxygenase 1) ana lyses. The morphological features of the lenses remained intact in the 0.4 Sv, 1.2 Sv and control groups, whilst the lenses in the 3.6 Sv group exhibited injuries. Results from the TUNEL assay demonstrated apparent apoptosis in lens epithelial cells following 3.6 Sv neutron radiation whereas sparse apoptosis was observed following 0.4 Sv and 1.2 Sv radiation. Malondialdehyde levels were reduced in the 0.4 Sv and 1.2 Sv groups but increased in the 3.6 Sv group, compared with those in the control group. Conversely, glutathione expression and the activity of superoxide dismutase were higher in the 0.4 Sv and 1.2 Sv groups, but lower in the 3.6 Sv group, compared with those in the control group. In addition, the total and nuclear protein levels of Nrf2 were increased following neutron radiation compared with those in the control group, though the Nrf2 protein levels decreased in the 3.6 Sv group compared with those in the 1.2 Sv group. The levels of glutamate-cysteine ligase catalytic s ubunit and heme oxygenase 1, downstream antioxidant enzymes of Nrf2, demonstrated the same profile as that in Nrf2. Taken together, the results of the present study suggest that neutron radiation affects Nrf2-regulated antioxidant systems in a two-stage process. Namely, the induction phase for low-dose radiation and regression phase for high-dose radiation. Therefore, it was hypothesized that activation and enhancement of the Nrf2-regulated antioxidant system may be useful in preventing or delaying IR-induced cataract, which may be extended even for other diseases associated with oxidative stress.

PMID:33732307 | PMC:PMC7903385 | DOI:10.3892/etm.2021.9765

View on the web

No comments:

Post a Comment